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Schools play a central role in the transmission of many respiratory
infections. Heterogeneous social contact patterns associated with
the social structures of schools (i.e., classes/grades) are likely to
influence the within-school transmission dynamics, but data-
driven evidence on fine-scale transmission patterns between stu-
dents has been limited. Using a mathematical model, we analyzed
a large-scale dataset of seasonal influenza outbreaks in Matsu-
moto city, Japan, to infer social interactions within and between
classes/grades from observed transmission patterns. While the rel-
ative contribution of within-class and within-grade transmissions
to the reproduction number varied with the number of classes per
grade, the overall within-school reproduction number, which
determines the initial growth of cases and the risk of sustained
transmission, was only minimally associated with class sizes and
the number of classes per grade. This finding suggests that inter-
ventions that change the size and number of classes, e.g., splitting
classes and staggered attendance, may have a limited effect on
the control of school outbreaks. We also found that vaccination
and mask-wearing of students were associated with reduced sus-
ceptibility (vaccination and mask-wearing) and infectiousness
(mask-wearing), and hand washing was associated with increased
susceptibility. Our results show how analysis of fine-grained trans-
mission patterns between students can improve understanding of
within-school disease dynamics and provide insights into the rela-
tive impact of different approaches to outbreak control.
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Influenza virus and other directly transmitted pathogens typi-
cally spread over social contact networks involving frequent

conversational or physical contacts (1–4). There is evidence
that schools are important social environments that can facili-
tate the transmission of influenza via close contact between
students (5–9). Previous studies have collected contact data
between students using questionnaires and wearable sensor
devices and found strong assortativity of contact rates within
classes and grades (10–14), which is likely relevant to the
within-school transmission dynamics of respiratory infections
and the effectiveness of school-based interventions. However,
such insights from contact data also need to be validated with
real-world outbreak data because contacts as measured in those
studies may not necessarily be fully representative of the types
of contacts that lead to transmission (e.g., with regards to prox-
imity and duration). In this light, the differential transmission
rates of influenza associated with classes and grades have also
been estimated from empirical outbreak data in a few studies
(6, 15, 16). However, those studies are limited to the analysis of
only one or two schools and included a relatively small number

of cases (<300). Therefore, robust findings across schools with
different structures that capture the full range of heterogeneity
in within-school transmission dynamics have remained a crucial
knowledge gap.

Understanding how school population structures (e.g., class
and school sizes) shape transmission dynamics is key to making
predictions about outbreak dynamics and interventions in these
settings. Modeling studies of school outbreaks often require a
choice between the “density-dependent mixing” and “frequency-
dependent mixing” assumptions (17). The density-dependent
mixing assumes that the transmission rate between a pair of stu-
dents is constant regardless of the class/school sizes, while the
frequency-dependent mixing assumes an inverse proportionality
between them. As a result, the reproduction number is expected
to increase with class/school size with the density-dependent mix-
ing assumption and remain stable with the frequency-dependent
mixing assumption. Whether the transmission is best charac-
terized by the density-dependent mixing, frequency-dependent
mixing, or any other alternative assumption may vary between
different modes of transmission and exposure settings (18–22).

Significance

Empirical evidence on detailed transmission patterns of
influenza among students within and between classes and
grades and how they are shaped by school population struc-
ture (e.g., class and school sizes) has been limited to date.
We analyzed a detailed dataset of seasonal influenza inci-
dence in 29 primary schools in Japan and found that the
reproduction number at school did not show any clear asso-
ciation with the size or the number of classes. Our findings
suggest that the interventions that only focus on reducing
the number of students in class at any moment in time (e.g.,
reduced class sizes and staggered attendance) may not be as
effective as measures that aim to reduce within-class risk
(e.g., mask-wearing and vaccines).
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However, choices between the assumptions made by existing
studies of school outbreaks vary widely and are not based on a
clear empirical consensus (9, 23–26). These makes it challenging
to interpret simulation studies evaluating school-based interven-
tions (e.g., reduced class sizes) because the estimated effect sizes
can heavily rely on the assumed mixing patterns (27–31).

To fill this knowledge gap in heterogeneous transmission
dynamics at school, we applied a mathematical model of influ-
enza virus transmission to a large-scale dataset from the 2014
to 2015 season in Matsumoto city, Japan, which included diag-
nosed influenza reports among 10,923 primary school students
and their household members. The model accounted for
within-school transmissions as well as introductions to and
from households and risk from the general community, which
constitute key social layers of transmission (32–34). Using this
model, we estimated fine-scale heterogeneous transmission pat-
terns among students within and between classes and grades, as
well as determinants of transmission rates including school
structures and precautionary measures.

Results
We analyzed citywide survey data of 10,923 primary school stu-
dents (5 to 12 y old) in Matsumoto city, Japan, in 2014/15,
which included 2,548 diagnosed influenza episodes among stu-
dents (Fig. 1A). The dataset was obtained from 29 schools with
a range of class structures (sizes and number of classes per
grade), allowing for detailed analysis of within and between
class transmission patterns (Fig. 1B). The attack ratio (i.e., the
cumulative proportion diseased) in each school (excluding
three distinctively small schools with fewer than 15 students per
class) showed weak to null negative correlations with the mean
class size and the mean number of classes per grade (Fig. 1C).
The onset dates of students showed a temporal clustering pat-
tern associated with school structure (Fig. 1D). When the stu-
dents were partitioned into different levels of groupings (i.e., by
class, grade, school and overall), the deviation of onset dates
from the within-group mean tended to be smaller with finer
groupings.

The temporal clustering shown in Fig. 1D supports the
hypothesis that the transmission is more likely within class, fol-
lowed by within grade and within school. We explored this fur-
ther by estimating reproduction numbers within school. Using a
mathematical model that accounts for different levels of inter-
action within and between classrooms and grades as well as
introductions from households and community, we estimated
the within-school effective reproduction number RS of seasonal
influenza in primary schools along with the breakdown of trans-
mission risks associated with class/grade relationships (Fig. 2).
The relationship between any pair of students in the same
school was classified as either “classmates,” “grademates” (in
the same grade but not classmates), or “schoolmates” (not in
the same grade). The estimated RS was broken down as a sum
of the contributions from these students, where the class size
(n) and the number of classes per grade (m) were assumed to
affect the risk of transmission. The reconstructed overall RS in
a 6-y primary school was estimated to be around 0.7 to 0.9 and
was not significantly associated with n or m (Fig. 2A). Namely,
an infected student was suggested to generate a similar number
of secondary cases irrespective of the class structure; although
our estimates of RS were about 15% smaller for the class size of
40 than 20,* the posterior P value did not suggest a statistical
significance (p ∼0.15 or above). As RS was likely below 1 across
class structures, school outbreaks may not have been sustained
without continuous introductions from households and

community. Transmission to classmates accounted for about
two-thirds of RS when each grade has only one class and was
partially replaced by transmission to grademates as the number
of classes per grade increases, while the sum of within-grade
transmission (i.e., transmission to either classmates or grade-
mates) remained stable (Figs. 2 B and C). Around 20 to 30%
of overall RS was explained by transmission to schoolmates
throughout. We also obtained qualitatively similar results through-
out our sensitivity analysis (SI Appendix, Fig. S4). In a 6-y school
with three classes of 30 students, the risk of transmission was esti-
mated to be 1.8% (95% credible interval [CrI]: 1.3 to 2.4) from a
given infected classmate of the same sex, 1.6% (1.2 to 2.1) the
opposite sex, 0.12% (0.08 to 0.19) from a given infected grademate,
and 0.036% (0.026 to 0.049) from a given infected schoolmate (SI
Appendix, Table S3). The cumulative risk of infection from the
community was estimated to be 2.0% (1.6 to 2.5) over the season.

We incorporated a log-linear regression (35) into this estima-
tion of RS to account for covariates that may affect the suscepti-
bility or infectiousness of students. The results suggested that
vaccines were associated with reduced susceptibility, while
mask-wearing was associated with both reduced susceptibility
and infectiousness (Table 1). Conversely, hand washing was
associated with increased susceptibility. Reduced chance of
transmission during the winter break (27 December 2014 to 7
January 2015) was captured as a 76% estimated decline in the
infectiousness of cases whose onset dates were during the
break. School grade, which serves as a proxy of students’ age,
did not show a significant association with either susceptibility
(relative value 1.03; CrI: 0.98 to 1.09) or infectiousness (relative
value 0.94; CrI: 0.88 to 1.00).

We estimated the breakdown of the source of infection for
student cases based on the conditional probability predicted by
the model and parameter estimates. The epidemic curve strati-
fied by the estimated source of infection suggested that within-
school transmission accounted for the majority of student cases
while schools were open and that the within-household trans-
mission was responsible for most of the cases reported during
the winter break and shortly after (Fig. 3A). The aggregated
relative contribution suggested that 51.1% (CrI: 50.0 to 52.0),
41.3% (CrI: 40.6 to 41.9), and 7.7% (CrI: 7.0 to 8.4) of the stu-
dent cases were acquired from school, household, and commu-
nity, respectively (Fig. 3B).

We estimated the possible relative effects of interventions
altering the school population structure on the school repro-
duction number RS. We assumed that the estimated relative
contributions of class/grade relationship to the transmission
risk reflect the contact patterns between students which may
also be relevant to the dynamics of another influenza outbreak
at school (and potentially those of directly transmitted disease
outbreaks in general) and that the responses to interventions
can be captured by the estimated relationship between RS and
the changes in the variables n and m according to each inter-
vention (Table 2). Specifically, in the “split class” scenario, each
class was assumed to be split in half and taught simultaneously
in separate classrooms, while in the “staggered attendance” sce-
narios, only half of the students attend school at the same time
by introducing two different time schedules, e.g., morning and
evening classes. The estimated relative effects of school-based
interventions on RS in a hypothetical setting of 6-y school with
two classes per grade (40 students each) showed that splitting
classes or staggered attendance alone was unlikely to reduce RS

(or may even be counteractive) (Fig. 1D), which is consistent
with the aforementioned estimates of RS minimally associated
with class sizes and the number of classes. By reducing interac-
tions between students from different classes (so-called
“bubbling” or “cohorting”) by 90%, RS could be reduced by up
to around 20%. Combining split classes/staggered attendance
with reduced interactions outside classes did not suggest

*For example, the estimated relative reduction was 16% (95% credible interval: �18 to
42%) for m = 3.
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incremental benefit in reducing RS. Given that these interven-
tions typically require additional resources including staff and
classrooms, the overall benefit to changing class structures for
influenza control may be limited.

Discussion
We used a mathematical model that stratified transmission
within and between classes/grades to understand the dynamics

of influenza transmission among primary school students. The
inferred transmission dynamics of seasonal influenza in Matsu-
moto city, Japan, in the 2014 to 2015 season suggested that the
within-school reproduction number RS stayed relatively cons-
tant regardless of the size or the number of classes [suggesting
“frequency-dependent mixing” (17)], in contrast to common
modeling assumptions. The estimated RS of 0.8 to 0.9, more
than half of which was attributable to within-class transmis-
sions, is consistent with a previous study in the United States

Fig. 1. Transmission dynamics of seasonal influenza in primary schools in Matsumoto city, Japan, and estimated effects of interventions for SARS-CoV-2.
(A) Epidemic curve of seasonal influenza by illness onset in primary schools in Matsumoto city, 2014/15. Colors represent different schools. Month names
denote the first day of the month. (B) Scatterplot of the class sizes and the number of classes per grade in the dataset. Each dot represents a class in the
dataset. Dots are jittered along the x-axis. Three schools had classes of fewer than 15 students (denoted by dotted horizontal line) and were excluded
from the model fitting. (C) The scatterplots of the school attack ratio (%) against the mean class size and the mean number of classes per grade. The cor-
relation indices (r) and 95% CIs are also shown. (D) Temporal clustering patterns of students’ onset dates with different levels of groupings reproduced
from the school transmission model. The distributions of the deviance of each student’s onset from the group mean are displayed at overall, school,
grade, and class levels. The SD of each distribution is also shown.
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(15). This value is also in line with the reported R0 of 1.2 to 1.3
for seasonal influenza (36) because our previous study esti-
mated that the students in this dataset had infected 0.3 to 0.4
household members on average during this 2014 to 2015 season
(note that R0 corresponds to the overall number of secondary
transmissions per student, including at school and household)
(18). The value of RS below 1 suggests that an outbreak cannot
sustain itself within a school alone and that interactions
through importing and exporting infections between house-
holds and the general community is likely to play a crucial role
in the overall transmission dynamics. We estimated that school,
household, and community accounted for 51%, 41%, and

8% of the source of infection for student cases, respectively.
The attributable proportion was lower for schools and higher
for households than the previous study (15), which may be
explained by different scales of outbreaks in schools and house-
holds. In the Matsumoto city dataset, the overall attack ratio at
school was lower (19%), students had larger households (aver-
age size 5.5), and there were more household cases than stu-
dent cases (3,996 vs. 2,548), as opposed to 35%, size of 3.4 and
141 vs. 129 cases in ref. 15.

The estimated breakdown of RS revealed a number of notable
patterns. As the number of classes per grade increased, the con-
tribution of within-class transmission risk declined and was

Fig. 2. The estimated within-school transmission patterns of seasonal influenza among primary school students in Matsumoto city, Japan. (A) The overall
school reproduction number (RS) under different class structures. Whiskers represent the 95% credible intervals. (B) The breakdown of RS corresponding
to each type of within-school relationships. Whiskers represent the 95% credible intervals. (C) Stacked graphs of RS based on the median estimates.

Table 1. Covariates and effects estimated in the log-linear regression

Covariate Frequency in data Relative susceptibility Relative infectiousness

School grade (1 y increase) 1.03 (0.98 to 1.09) 0.94 (0.88 to 1.00)
Vaccine 47.7% 0.89* (0.81 to 0.97) 0.97 (0.81 to 1.14)
Mask-wearing 51.4% 0.77* (0.70 to 0.84) 0.66* (0.56 to 0.79)
Hand washing 80.1% 1.54* (1.36 to 1.75) 1.27 (0.97 to 1.72)
Onset in winter break 5.9% (of cases) 0.24* (0.14 to 0.37)

Values are median estimates and 95% credible intervals.
*Estimates with 95% credible intervals not crossing 1.
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replaced by within-grade transmission. Combined with the almost
constant overall RS, this might indicate that contact behavior
between students that contributed to transmission was only mini-
mally affected by the student population density. That is, students
may have had a certain number of “close friends” with whom
they had more intimate interactions that could facilitate transmis-
sion. In a school with more classes per grade, some of such
friendship may have come from grademates instead of class-
mates, but the total number of close friends may have remained
similar. This interpretation is in line with published evidence of
influenza spreading predominantly in close proximity (37) and is
likely to influence the expected effect of interventions not only
for influenza but also other respiratory infectious diseases includ-
ing COVID-19, which share similar routes and range of transmis-
sion (38, 39). Further disease-specific studies could elucidate the
generalizability of these associations in more detail.

Our results suggested that interventions such as reducing
class sizes or the number of students present (staggered atten-
dance) may not be effective in contrast to what would be
expected under the density-dependent mixing assumption
(27–31). If interventions altering class structures are not accom-
panied by additional precaution measures and students try to
resume their “natural” behaviors (i.e., the same contact pat-
terns as those in school with the resulting class structures)
through so-called social contact “rewiring” (40), the effect of
such interventions can diminish or even reverse. For example, if
other classes are absent due to staggered attendance, students
may increase their interactions with classmates instead of their
previous close friends in other classes. Our results are also con-
sistent with a recent study of interventions against COVID-19
in US schools that did not find a significant risk reduction asso-
ciated with reducing class sizes (41). Given the additional

Fig. 3. Reconstruction of students’ source of infection. (A) Epidemic curve stratified by the reconstructed source of infection. The conditional probability
of infection from different sources was computed for each student and aggregated by date of illness onset. (B) Breakdown of the reconstructed source of
infection. For each student, the source of infection was sampled based on the conditional probability to provide the proportion of students infected from
each source. Bars denote posterior median and whiskers 95% credible intervals. (C) Expected relative changes in the school reproduction number under
school-based interventions changing the structure of classes. Dots represent medians and whiskers 95% credible intervals. Reduced outside-class transmis-
sions (i.e., from grademates or schoolmates) were also considered (50% reduction: blue; 90% reduction: green).
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logistical resources required to implement these interventions, we
propose that reducing the class sizes or the number of attending
students should be considered only if they enable effective imple-
mentation of precaution measures such as physical distancing,
environmental cleaning, or forming social bubbles.

Using a log-linear regression analysis combined with a trans-
mission model, we identified several precautionary measures
associated with the susceptibility or infectiousness of students.
Vaccines were associated with reduced susceptibility and masks
with a reduction in both susceptibility and infectiousness. Influ-
enza vaccine effectiveness in the 2014 to 2015 season was sug-
gested to be particularly low in Japan due to vaccine mismatch
and estimated to be 26% (95% CrI: 7 to 41%) for primary-
school-age children (6 to 12 y old) (42). Our estimate of a rela-
tive susceptibility of 0.89 (CrI: 0.81 to 0.97) in vaccinated
students, which translates into a vaccine effectiveness of 11%
(CrI: 3 to 19%), is broadly consistent with this prior estimate.
While existing evidence for the effectiveness of mask policies
for the control of respiratory infections is still limited (43, 44),
our estimates of small protective effects acting on the relative
susceptibility (0.77; CrI: 0.70 to 0.84) and infectiousness (0.66;
CrI: 0.56 to 0.79) lie within a plausible range based on evidence
available to date (43, 45–47). Increased susceptibility associated
with hand washing in our analysis, however, does not align with
existing findings (48, 49). The amount of exposure (i.e., cases
around a student) was explicitly adjusted for in our transmis-
sion model, limiting the possibility of typical confounding where
hand-washing behavior was triggered by outbreak intensity.
Although the underlying cause for this association is unclear,
the original report on the Matsumoto city dataset also reported
a higher odds ratio (1.4; CrI: 1.27 to 1.64; unadjusted for differ-
ential exposure) and attributed it to the possible congregation
of students washing hands in communal settings at school (50).

Several limitations of this study should be noted. First, the
transmission patterns within schools were estimated from a sin-
gle dataset of seasonal influenza in primary schools (aged 5 to
12 y) in Matsumoto city, Japan, and it is unclear to what extent
the results can be extrapolated to other settings, e.g., secondary
schools or schools in other countries. Some features of our
results may still be relevant to transmission dynamics in differ-
ent types of schools if they reflect general social contact behav-
iors of schoolchildren; however, the relative contribution of
within-class/within-grade interactions may become smaller for
older students (13). The data points used in the inference
mostly consisted of classes of size 20 to 40 (those with a size
smaller than 10 were excluded, as they might be operated dif-
ferently), and most schools had no more than 5 classes per
grade. The scope of the estimated effect of the school-based
interventions was also limited to within this range for internal
consistency and thus may not necessarily be applicable to class
structures outside this range (e.g., splitting a class of 20

students into two). Extrapolating the estimated transmission
patterns to other respiratory infectious diseases also warrants
caution because their epidemiological characteristics may not
be identical, although we believe that such an approach may
still be useful for diseases sharing similar modes of transmis-
sion. Modeling studies using social contact data often assume
proportionality between contacts and the transmission of directly
transmitted diseases (e.g., measles, influenza, and COVID-19)
and have many successful applications (7, 33, 51–55). Using the
estimated transmission patterns of influenza as a proxy for other
diseases essentially rests on the same assumption, which nonethe-
less has limitations and should eventually be validated by disease-
specific studies. Second, some aspect of the outbreaks may have
been missing from the dataset. Since the illness data of teachers
were not available, they were not considered throughout the anal-
ysis. However, their role in seasonal influenza transmission may
have been minor given a large number of student cases and the
smaller risk in adults (56, 57). Although our student incidence
data likely had good case ascertainment given encouraged medi-
cal attendance and confirmation by rapid diagnostic kits (18), a
certain proportion of infections (e.g., asymptomatic or very mild)
may have been missing. We believe that students feeling unwell
due to influenza mostly attended medical institutions and
received a test as it was encouraged by schools. Nonetheless, it
should be noted that this could have been a source of bias in the
estimated transmission patterns. Students with very mild symp-
toms (e.g., only slightly sore throat) may visit a medical institution
only if they know of other classmates also diagnosed with influ-
enza. If such cases were common, the contribution of within-class
transmissions in our results might have been an overestimate.
Third, since the dataset was obtained from an observational
study, the identified determinants of transmission may not be
causal and should not be viewed as conclusive evidence. The
results of our log-linear regression were mostly in line with exist-
ing findings; however, our dataset may still be biased due to
unmeasured confounders such as health awareness. Our esti-
mates of the relative effect of school-based interventions were
based on the assumption that students’ behaviors follow the
fixed patterns according to the school structure even under
interventions. That is, when the class size or the number of clas-
ses were changed by an intervention, students were assumed to
change their behavior according to the new school structure (as
if it were the original structure) by, for example, rewiring close
contacts in a timely manner. This is a hypothetical expectation
that may not exactly be observed in actual interventional set-
tings; for example, it may take time for students to resume close
contacts after the class is split, which can bring RS lower than
our prediction at least temporarily. We have also neglected the
possible effect of the interventions on the transmission outside
the school. The actual effects of these interventions should ide-
ally be validated by empirical data, as in ref. 41.

Table 2. Summary of interventions that changes the size/number of classes

Interventions Class size (n)
No. classes per

grade (m) Assumption

Baseline (“no change”) 40 2 Students’ contacts within and between classes and grades are proportional
to the estimated transmission patterns in Fig. 2.

Split class 20 4 Each class is split into two and taught simultaneously in separate
classrooms. Students may contact each other between classes.

Staggered attendance
(within class)

20 2 Each class is split into two and taught separately in two different time slots
(e.g., morning and evening). Students in different time slots do not
contact each other, and thus RS is calculated for students in one slot.

Staggered attendance
(between class)

40 1 Each class is allocated (as a whole) to either of the two different time slots
and taught separately. Students in different time slots do not contact
each other, and thus RS is calculated for students in one slot.
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Our analysis disentangled the transmission dynamics of seasonal
influenza among primary school students and highlighted the rela-
tive importance of within-class and within-grade transmission.
Since class and school sizes were minimally associated with the
within-school reproduction number, school-based interventions
that change classroom structures, e.g., reduced class sizes and stag-
gered attendance, may have limited effectiveness. Empirical evi-
dence on fine-grained heterogeneous transmission patterns at
school as was obtained from this study would inform public health
planning for future outbreaks of influenza and, potentially, other
directly transmitted infectious diseases that thrive in schools.

Materials and Methods
Data. We analyzed a citywide school-based influenza survey data from the
2014/15 season. The survey was conducted inMatsumoto city [population size:
242,000 (58)], Japan, enrolling 13,217 students from all 29 public primary
schools in the city. During the survey period (from October 2014 to February
2015), the participants were asked to fill out a questionnaire when they were
back from the suspension of attendance due to diagnosed influenza (prospec-
tive survey). In March, the participants were asked to respond to another sur-
vey on their experience during the study period, regardless of whether they
had contracted influenza (retrospective survey). A total of 2,548 diagnosed
influenza episodes were reported in the prospective survey, which accounted
for 96% of the cases officially recognized by the schools during the study
period. Primary schools in Japan often requested students suspected of influ-
enza to seek diagnosis at a medical institution. All students reporting an influ-
enza episode in the prospective survey answered that they had received a
diagnosis and at least 95% of themwere noticed of type A influenza (indicat-
ing that they were laboratory-confirmed). In the retrospective survey, 11,390
(86%) participants responded, among which 8,375 reported that they did not
have influenza during the study period.

We combined those who responded to the prospective survey (“case
group”) and those who reported no influenza experience in the retrospective
survey (“control group”) and obtained a dataset of 10,923 students. Of those,
71 students from 3 schools with less than 15 students per grade were excluded
because they may have different schooling patterns from other schools (e.g.,
some students in different grades shared classrooms). We used individual pro-
files (sex, school, grade, class, household composition), onset dates, influenza
episodes of household members, and precaution measures students engaged
in (vaccine, mask, hand washing) in the subsequent analysis. Further details of
the dataset can be found in the original studies (50, 59).

The secondary data analysis conducted in the present study was approved
by the ethics committee at the London School of Hygiene and Tropical Medi-
cine (reference number: 14599).

Inference Model. We modeled within-school transmission considering class
structures as follows. We defined the “school proximity” d between a pair of
students i and j attending the same school as

d ¼
1 ðdifferent grades, same schoolÞ
2 ðdifferent classes, same gradeÞ
3 different sex, same classð Þ
4 ðsame sex, same classÞ

:

8>><
>>:

[1]

To investigate the potential effect of reduced class sizes and the number of
attending students, wemodeled the transmission between students as a func-
tion of two variables: the class size n and the number of classes per grade m
(i.e., the number of students per grade is nm). Namely, we assumed that in the
absence of any individual covariate effects, the cumulative transmission rate
between student i and j in proximity d over the infectious period is repre-
sented as

bij ¼ bd ni,dð Þ�cd mi,dð Þ�dd , [2]

where bd , cd, and dd are parameters to be estimated. When i and j are in the
same grade (i.e., d = 2, 3, 4), the average class size and the number of classes
in that grade were used as ni,d and mi,d . When d = 1, the school average was

used as ni,d and mi,d . The exponent parameters within the same class were
assumed to be equal: c3 ¼ c4 and d3 ¼ d4.

We modeled the daily hazard of incidence for student i as a renewal pro-
cess. Let hs be the onset-based transmission hazard as a function of serial
interval s (normalized such that ∑∞

s¼1hs ¼ 1; hs ¼ 0 for s ≤ 0). We used a
gamma distribution of a mean of 1.7 and an SD of 1.0 for influenza, which
resulted in a mean serial interval of 2.2 d (60). The daily hazard of disease
onset attributed to school transmission is given as

kSi Tð Þ ¼ vi∑
j
wjbijhT�Tj , [3]

where vi and wi represent the relative susceptibility and infectiousness,
respectively, which are specified for each individual by a log-linear regres-
sion model to account for covariates (see SI Appendix for detailed
methods).

In addition to the within-school transmission, we also considered within-
household transmission and general community transmission. Within-
household transmission was incorporated as the Longini-Koopmanmodel (61)
using parameters from a previous study on the same cohort of students (18).
General community transmission was modeled as a logistic curve fitted to the
total incidence in the dataset to reflect the overall trend of the epidemic. See
SI Appendix for further details of the model.

We constructed the likelihood function and estimated the parameters by
the Markov-chain Monte Carlo (adaptive mixture Metropolis) method. We
obtained 1,000 thinned samples from 250,000 iterations after 250,000 itera-
tions of burn-in, which yielded the effective sample size of at least 300 for
each parameter. Using the posterior samples, we computed the proximity-
specific reproduction number Rd in a hypothetical 6-y school with given n and
m (assumed to be constant schoolwide) as

Rd ¼
5nm � b1n�c1m�d1 ðd ¼ 1Þ

nðm� 1Þ � b2n�c2m�d2 ðd ¼ 2Þ
n � b3 þ b4

2
n�c3m�d3 ðd ¼ 3, 4Þ

8><
>:

[4]

and defined the within-school reproduction number RS as a sum of them.
We predicted the relative reduction in RS under intervention measures

changing the number of attending students and class structures by using pos-
terior samples. Interventions were assumed to change n and m as shown in
Table 1, and the predictive distribution of the relative change in RS was com-
puted for each intervention. The estimated RS represents the value in a hypo-
thetical condition in which an infectious student spends the whole infectious
period at school; the effect of absence due to symptoms or the staggered
attendancewas not included in this reduction.

Further details of the model can be found in the SI Appendix, Text.
All analysis was performed in Julia 1.5.2 and R 4.1.0. Replication code is
available on GitHub (https://github.com/akira-endo/schooldynamics_FluMatsu
moto14-15).

Data Availability. Due to potentially sensitive information included, the origi-
nal dataset is not made public and is available from the corresponding author
upon reasonable request. A processed dataset with an increased level of ano-
nymity, which can still qualitatively reproduce the main study finding (i.e.,
breakdown of the school reproduction number breakdown by the class/
grade relationship without adjustment for covariates), is publicly available
along with the accompanying code on a GitHub repository (https://github.
com/akira-endo/schooldynamics_FluMatsumoto14-15), whose archived ver-
sion at time of publication is available from ref. 62.
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